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Abstract
This paper discusses the challenges and opportunities in the testing of software systems that include or rely on 
artificial intelligence, particularly machine-learning algorithms.
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“Artificial Intelligence” or AI is a loose term that may 
refer to any computer system that carries out activities 
that even distantly resemble human thinking. Exam-
ples of such activities are logical reasoning, pattern 
recognition, or proximity calculation.

AI has been a part of computing for decades already. 
It originated as rule-based artificial intelligence where 
a computer system is fed with logical reasoning rules 
and it uses those rules to find answers to questions 
that require logical reasoning. Such reasoning may be 
very complex and impossible for the human brain to 
perform. Still, it is deterministic.

The emergence of big data brought along another type 
of artificial intelligence, often referred to as “machine 
learning” or briefly “ML”. The mathematical models 
for machine learning had been around for decades al-
ready but became usable only with the easy availabil-
ity of data and computing power. The idea is to have 
a software algorithm that is taught with labeled data 
rather than by rules. The software algorithm learns, 
for example,  what an image of a cat looks like or what 
a data record for a fraudulent bank transaction looks 
like. The more cats and transactions the software sees 
the better it gets at recognizing them. This is why it’s 
called “learning”.

The examples above, although rough simplifications, 
illustrate the state of the of “artificial intelligence” to-
day as well as the opportunities to utilize it. The main 
opportunities are in complex logical reasoning and in 
making sense of data. 

Software testing and artificial intelligence make an 
interesting pair. There are a plethora of activities in 
software testing that can benefit from artificial in-
telligence. Obvious examples are test case design 
and analysis of test results that are still today largely 
human activities.  

But there is another, more interesting connection 
between software testing and artificial intelligence. 
The whole discipline of software testing is based on 
the idea that the tester is somehow able to know, or 
at least guess, the expected result of a test in advance. 
Usually, the expected result is provided by the speci-
fication of the software under test. The specification 

tells how the software is supposed to behave and the 
tester aims at finding a deviation between specified 
behavior and actual behavior.

AI applications can be challenging to test. In all testing, 
the tester has to find or create relevant input data 
and then somehow determine the expected result, i.e. 
what the software under test is supposed to produce 
as output or result from that particular data. If the task 
the AI is carrying out would be easy for a human brain, 
e.g. image or text recognition, the tester’s job isn’t that 
difficult. But if the AI is doing something that is over-
whelmingly difficult for the human brain, e.g. digging 
out patterns from consumer data or scientific data, 
the tester may need to somehow reconstruct the logic 
of the artificial intelligence to figure out the expected 
result. Such an effort may be impossible or at least 
very slow.
 
Machine learning applications are “trained” with 
an initial data set. To improve the algorithm one 
needs to re-train it with more data. New data may, 
of course, change how the algorithm treats the initial 
data. Some machine-learning algorithms may even 
be programmed to learn something new every time 
they are being used. In all cases, the machine-learning 
algorithms tend to be stochastic, which means their 
“thinking” contains a fair amount of randomness. Thus, 
machine-learning software is not fully deterministic in 
the way traditional software applications are. Just like 
the human brain can be influenced by false data and 
fake news a machine learning application can learn to 
make wrong conclusions. And just like human beings 
often fail to explain the logic of their thinking, machine 
learning applications, too, fall short in their capability 
to explain how they came to their conclusion. The chal-
lenge of testing is to figure out whether changes and 
improvements made the intelligence better or worse.

Introduction
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A system that thinks is too complex for the human mind
Applications of artificial intelligence do not, of course, 
think in the way humans do but there is some resem-
blance to human thinking. 

An AI application may carry out logical reasoning using 
a complex algorithm that, although fully deterministic, 
can be too complex for a human mind to follow. This 
is different from the majority of computer algorithms 
that are simple enough to be executed by human 
brains. A human being trying to reconstruct a logic of 
AI is a bit like a human being trying to reconstruct the 
line of thought of another human being: the outcome 
is clear, the input data is clear, but the process in be-
tween remains largely unexplained.

The algorithm itself, although designed by a human 
being is itself too complex to be followed and imitat-
ed by a human mind. Moreover, the algorithm learns 
every time it meets new input data. Even though a hu-
man being could be able to repeat the algorithm it is 
not always certain whether the output of subsequent 
runs of the algorithm remains the same.

Let us consider an AI algorithm that takes information 
about a credit card transaction as its input and tries 
to determine how likely that transaction is a fraud. 
The input may contain data such as the content and 
location of the transaction, card number, and the 
card holder’s transaction history. The AI algorithm has 
probably been programmed to identify suspicious 
transactions and trained with a wealth of data to 
distinguish between transactions that are fraudulent 
from those that are not.

Such an algorithm can rarely be 100% reliable because 
there are always gray areas. People sometimes make 
purchases very different from their normal purchasing 
patterns and the bad guys may be very competent in 
constructing unauthorized transactions that match the 
buying patterns of the authorized cardholder.

The detection algorithm has to learn all the time to 
remain effective. This can be achieved by creating a 
self-learning algorithm, known as unsupervised ma-
chine-learning, or re-training the algorithm frequently. 
Ideally, while processing a transaction, the algorithm 
would also accumulate its knowledge on how a prop-
er transaction looks like. This is brilliant, of course. 
However, just like human beings, machine learning 
algorithms do a notoriously poor job explaining how 
and why they made their conclusion. Therefore, there 
is no reliable way to ensure that the learning of the 
algorithm actually makes it better.

An infamous example is Tay, an experimental Twitter 
bot published by Microsoft in 2016. Wikipedia summa-
rizes the story of Tay as follows:

Tay was an artificial intelligence chatterbot that was 
originally released by Microsoft Corporation via Twitter on 
March 23, 2016; it caused subsequent controversy when 
the bot began to post inflammatory and offensive tweets 
through its Twitter account, causing Microsoft to shut 
down the service only 16 hours after its launch.[1] Accord-
ing to Microsoft, this was caused by trolls who “attacked” 
the service as the bot made replies based on its interac-
tions with people on Twitter.

Learning algorithms, at least those based on reinforce-
ment learning, can learn bad habits, too. Just consider 
the possible consequences if our credit card checking 
algorithm, for whatever reason, began to learn that 
some fraudulent transactions are, in fact, valid. 

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Chatterbot
https://en.wikipedia.org/wiki/Microsoft_Corporation
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Trolling
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The process of testing
Testing the functionality of a piece of software is a very 
simple process. I mean, it’s very simple in principle.

1.	 Figure out how you can interact with the software.
For example, when testing a login screen, one 
can (usually) interact by typing in a username, a 
password, and by clicking an OK button or a Cancel 
button.

2.	 Figure out what data you need to interact with the 
software. 
On the login screen, you only need usernames and 
passwords, some of which would be correct and 
some others incorrect.

3.	 Plan a flow of user actions and related input data. 
Even in a simple application, there are usually 
various flows of actions. A professional tester 
looks both at the “normal” flow and exceptional or 
abnormal flows. You may test clicking Ok without 
entering any username or password or you may 
test if it makes any difference whether you enter 
the password first and the username second.

4.	 Figure out what should happen as a consequence of 
executing the flow. 
This is where professional testers shine. One 
should always decide the expected result in 
advance. If you don’t do so, you’ll easily accept 
erroneous behavior as “expected”. If one clicks OK 
without entering a username at all, the expected 
result is an error message and an opportunity to 
try again.

5.	 Execute the flow.

6.	 Record what happened.

7.	 Compare what happened to what should have hap-
pened. 
In testers’ jargon, “error” or “defect” is found if 
expected and actual outcomes are different. Now-
adays professional testers call these differences 
using a more neutral term “finding”.

8.	 If you think you have not tested enough, go back to 
step 3.

Of these steps, number 4 is the most interesting one. 
How does the tester know what should happen? There 
may exist a specification that describes the correct 
behavior, or there may exist a previous version of the 
software that is considered to behave correctly. Some-
times, the tester may just rely on his or her experi-
ence. The behavior of a login screen can be considered 
commonly known and there aren’t that many alterna-
tive behaviors.

Sometimes, the tester first makes a guess about the 
correct behavior and then assumes most users are 
like him or her and would thus assume the same. This 
principle is the basis of a discipline known as explor-
atory testing.

Any source that defines the correct behavior of the 
system under test is known as “test oracle” in testers’ 
jargon. When testing AI applications, a test oracle 
may be hard to find. It is both tedious and difficult to 
construct credit card transactions and label them as 
fraudulent or non-fraudulent. Sometimes, of course, 
it is not that difficult. This is probably why recognizing 
cats in images is commonly used for testing machine 
learning algorithms.
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Finding test data
A well-defined flow of events through an application, 
with associated data and expected outcome, is known 
as a test case. Selecting, designing, and maintaining 
test cases is a tester’s most important task. The test 
case design is always based on the existence of a test 
oracle, i.e. a specification or some other ”source of 
truth” that knows the expected outcome of the test 
case.

Sometimes test case design is far from trivial. In our 
example of credit card fraud detection, there is no 
explicit specification of what makes a fraudulent or 
possibly fraudulent transaction. Finding the right out-
come is like crime scene investigation: collecting a lot 
of information, constructing a big picture from small 
clues, making a verdict, and estimating its probability.

In most machine learning applications, the functional 
logic of a test case is simple. One feeds in data and 
gets out an answer, such as ”this is, on the probabil-
ity of 94,2%, an image of a cat”. The hard part is to 
find or create a set of input data that is representa-
tive enough and to label it correctly; especially if it 
is something more complex than an image of a cat. 
Please note, that while recognizing an image of a cat 
is easy for a human being it is difficult for a computer 
algorithm while recognizing a fraudulent credit card 
transaction may be easier for an algorithm than for a 
human being.

Testing machine learning software would need a large 
number of diverse, high-quality test cases but they are 
hard to build. It is usually possible to have a limited set 
of known cases, e.g. 10 credit card transactions, that 
are known to be fraudulent and 10 that are known 
to be proper. Testing with those 20 cases gives some 
confidence in the correct behavior of the software 
and helps, for example, detect if a new version of the 
software is still working as expected.

Such limited tests help ensure the software still does 
what it could do before. They tell nothing about 
whether and how the software has improved or if new 
problems have been introduced. Lacking a proper test 
oracle, crafting such new tests may sometimes be very 
tedious, if not impossible.

There are at least four different approaches to con-
structing test data for a learning system:

1.	Manually crafted test data.

2.	Testing with real production data.

3.	Combinatorial test data.

4.	AI-assisted test data design.

Let’s assess these approaches in the context of the 
credit card fraud detection problem.

It is possible to construct test data manually. Most 
probably, the test input data comes in the form of 
transaction records and structured files, for example 
in XML or JSON format, or may even contain natural 
language. A human being can certainly construct such 
data and label it as proper or suspicious. It’s just that 
the effort of doing so is high and may require technical 
skills.

Testing with real data, if available, is often a great 
choice. In our case study, this would mean taking real 
data from old transactions that have later on been 
proven righteous or fraudulent. While this approach 
has its merit, it may be illegal in many countries as 
the privacy of personal and financial data is strongly 
protected by laws and regulations. There are, however, 
many other applications where testing with real data is 
a viable choice.

The combinatorial test data approach may work well 
for our case study. The idea is to divide the needed 
test data into separate parts, such as transaction data, 
card data, purchase location data, purchase history 
data, etc., and make combinations of those parts so 
that a large number of data sets can be generated 
from a reasonably small amount of well-known data. 
Moreover, one could add random data or randomly 
mutated data. This is, of course, best done by some 
kind of software generator rather than a human being. 
The problem is that those ”data atoms” are rarely in-
dependent. For example, building test data by combin-
ing a card transaction of one person with a purchase 
history that represents another person and card data 
that represents a third person may not make a viable 
test case. This approach works well when test data 
is complex but can be divided into independent or 
quasi-independent pieces that each can be labeled 
reliably.
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Dealing with regression: does my software still work?
A software tester seeks answers to two big questions: 
does the software do what is expected and does the 
software do something that is not expected. When 
testing subsequent versions of the same software, a 
tester looks at what has changed: there is a piece of 
new functionality that has never been tested before, 
there is old functionality that should still work as 
before, and there is old functionality that used to have 
defects but has been fixed and should now behave 
differently.

The older the software gets the more important it 
is to test that what worked yesterday still works the 
same way today. Sometimes, especially if the software 
has a large number of users, it may even be practical 
to not correct old defects but to verify that they still 
are there. A well-known example is an environment 
sensing device that, because of a design error, re-
ports certain temperatures as Fahrenheit while in all 
other functions it uses Centigrade. Such an error is a 
big nuisance, but if there are already several people 
and applications that know about it and have worked 
around it, correcting the error would actually break 
the assumptions on the behavior and thus make many 
applications fail.

Testers use the phrase ”regression testing” to refer to 
the activity of ensuring that the behavior of the soft-
ware has not changed unintentionally between sub-
sequent versions. With machine learning applications, 
regression testing comes with a new twist: how does 
one know if a change was intentional? 

It is a rather common practice to use an older version 
of the software as a test oracle and compare how the 
behavior of a newer version differs from the behavior 
of the older one. This works well when the new soft-
ware happens to behave the same way as the old. It 
does not work for new functionality, though. It may 
also fall short if the test results for the new version are 
different.

Building on our credit card example again: imagine 
that a new version of the software classifies a transac-
tion as valid while the previous version classified it as 
possibly fraudulent. How do we know if this is an im-
provement or an error? The only way is to make some 
kind of human judgment. This requires skill and knowl-
edge as the tester needs to go deep in the test data 
and in the decision-making rules. It may also turn out 
to be very slow and expensive if such changed regres-
sions are many. Moreover, the fact that the algorithm 
made a false conclusion on data that is previously had 
recognized right may not mean the algorithm is now 
worse. The test results have to be assessed statistical-
ly, maybe even applying some kind of cost function. 
In this particular example, one has to consider how 
many transactions in total the new algorithm classified 
correctly compared to the old and how did the cost of 
erroneously classified transactions change.

There is no general solution to the regression test-
ing challenges. The fundamental question is general, 
though: has the algorithm evolved for better or for 
worse.

Finally, AI-assisted test data design means using the 
beast to tame itself. There exist few, if any, gener-
al-purpose solutions for AI-assisted test data design 
but the idea is simple: use a more or less intelligent 
algorithm to process past test data and test results 
and generate new test data based on the old one. In 
a way, this is like the combinatorial approach with 
steroids. Explainability may become a challenge, again. 
The more machine intelligence there is in the test 
data generation the less capable a human being is of 
following the logic that was applied. This approach 

resembles the concept of Generative Adversarial Net-
works where one algorithm tries to fake real data and 
the other tries to detect what data is genuine and what 
is faked.

No matter which approach you choose, the basic 
challenges remain the same: how to create a large 
enough amount of diverse test data and how to label 
it reliably.
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Searching for a recipe
It would be foolish to seek a single, ideal solution for 
such a broad challenge as testing of AI software. All 
viable solutions, however, seem to have a few things in 
common. 

Always test with your initial data set
If your application uses any kind of machine learning 
it has been trained with some kind of initial data set. 
This data set is your first test asset and, in the begin-
ning, it may be the only reliable test data you have. 
Whenever you need to test your software start with 
this data set.

Testing with the initial data set can only tell if your 
software can still do the things it was able to do when 
it was created. Therefore, it won’t take you far.

Accumulate test data continuously
You need more test data. In most AI applications it 
is the data rather than the logic of the test case that 
makes the test design a challenge. Therefore, you 
need to keep accumulating test data. Sometimes it is 
possible to pick real data from production, sometimes 
it has to be engineered by the testing team. Some-
times your software may malfunction in production.

The only silver lining in that cloud is that you just 
found very useful new test data. Any data that the soft-
ware could not process correctly is potential input for 
future tests. If possible, use combinatorial techniques 
to generate more test data from existing test data. 
Take good care of the quality of your data. Accumulat-
ing just any data may make your test set large but not 
necessarily any better.
 
Use many test oracles, if possible
Depending on what your software does, it may be 
very easy or very difficult to determine the expected 
outcome of each test. If you can manually label your 
test data, you will be fine. This is the case with the 
infamous cat pictures, for example. If you cannot, you 
need to come up with something else. Sometimes 
you may have an opportunity to use several machine 
learning algorithms for the same data and compare 
their outputs. Often, the best you can do is to rely 
on the earlier versions of the same software as the 
“source of truth”.

Compare subsequent test runs
Any change in test results between subsequent runs 
tells that your software has evolved somehow. You 
may not always be able to determine if the change was 
for better or for worse - or maybe both at the same 
time. But you will notice if something has changed and 
can then start digging deeper. As explainability is the 
Achilles’ heel of most AI applications, be prepared for 
tedious digging. Any explainability that can be built in 
the application will help to test and thus accelerate 
time to value.

Use AI and automation in testing
The world is full of marvelous testing tools that can 
automate many mundane tasks of software testing, 
even when testing AI. However, none of them are 
particularly well equipped for testing AI applications. 
You may need to complement commercial tools with 
your tools and scripts that generate suitable test data 
or automate the analysis of test results. While such 
general-purpose tools may not yet exist building a tool 
to suit the specific needs of your application may be a 
lesser effort. Maybe you can find ways to apply AI to 
test AI.
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Ultimately, artificial intelligence is just algorithms and data
Technically, “artificial intelligence” is not that different 
from any other software. It is comprised of program-
matic algorithms and data that were applied to train 
those algorithms.

The key differences are in learning, randomness, and 
explainability. Unlike traditional computing algorithms, 
AI algorithms may change their behavior when they 
learn from new data. There is a random element in 
many of those algorithms, making them only partially 
deterministic. And finally, because of learning and ran-
domness, their logic may be hard for a human being 
to reconstruct or explain.

These characteristics make AI sometimes challenging 
to test. As we have shown in this paper, the traditional 
methods of software testing still apply for AI, too. The 
amount and quality of test data are even more import-
ant than with traditional applications. Automation of 
testing tasks is necessary because many aspects of AI 
testing are simply too tedious or overwhelming for the 
human mind. The use of AI to test AI may open com-
pletely new avenues in software testing and, at a high 
probability, will be increasingly used also for testing 
“traditional” software systems.
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