
Artificial intelligence and testing
Written by Esko Hannula
October 2020

2

Abstract
This paper discusses the challenges and opportunities in the testing of software systems that include or rely on
artificial intelligence, particularly machine-learning algorithms.

Contents

Introduction										 3

A system that thinks is too complex for the human mind		 4

The process of testing									 5

Finding test data									 6

Dealing with regression: does my software still work?			 7

Searching for a recipe									 8

Ultimately, artificial intelligence is just algorithms and data		 9

3

“Artificial Intelligence” or AI is a loose term that may
refer to any computer system that carries out activities
that even distantly resemble human thinking. Exam-
ples of such activities are logical reasoning, pattern
recognition, or proximity calculation.

AI has been a part of computing for decades already.
It originated as rule-based artificial intelligence where
a computer system is fed with logical reasoning rules
and it uses those rules to find answers to questions
that require logical reasoning. Such reasoning may be
very complex and impossible for the human brain to
perform. Still, it is deterministic.

The emergence of big data brought along another type
of artificial intelligence, often referred to as “machine
learning” or briefly “ML”. The mathematical models
for machine learning had been around for decades al-
ready but became usable only with the easy availabil-
ity of data and computing power. The idea is to have
a software algorithm that is taught with labeled data
rather than by rules. The software algorithm learns,
for example, what an image of a cat looks like or what
a data record for a fraudulent bank transaction looks
like. The more cats and transactions the software sees
the better it gets at recognizing them. This is why it’s
called “learning”.

The examples above, although rough simplifications,
illustrate the state of the of “artificial intelligence” to-
day as well as the opportunities to utilize it. The main
opportunities are in complex logical reasoning and in
making sense of data.

Software testing and artificial intelligence make an
interesting pair. There are a plethora of activities in
software testing that can benefit from artificial in-
telligence. Obvious examples are test case design
and analysis of test results that are still today largely
human activities.

But there is another, more interesting connection
between software testing and artificial intelligence.
The whole discipline of software testing is based on
the idea that the tester is somehow able to know, or
at least guess, the expected result of a test in advance.
Usually, the expected result is provided by the speci-
fication of the software under test. The specification

tells how the software is supposed to behave and the
tester aims at finding a deviation between specified
behavior and actual behavior.

AI applications can be challenging to test. In all testing,
the tester has to find or create relevant input data
and then somehow determine the expected result, i.e.
what the software under test is supposed to produce
as output or result from that particular data. If the task
the AI is carrying out would be easy for a human brain,
e.g. image or text recognition, the tester’s job isn’t that
difficult. But if the AI is doing something that is over-
whelmingly difficult for the human brain, e.g. digging
out patterns from consumer data or scientific data,
the tester may need to somehow reconstruct the logic
of the artificial intelligence to figure out the expected
result. Such an effort may be impossible or at least
very slow.

Machine learning applications are “trained” with
an initial data set. To improve the algorithm one
needs to re-train it with more data. New data may,
of course, change how the algorithm treats the initial
data. Some machine-learning algorithms may even
be programmed to learn something new every time
they are being used. In all cases, the machine-learning
algorithms tend to be stochastic, which means their
“thinking” contains a fair amount of randomness. Thus,
machine-learning software is not fully deterministic in
the way traditional software applications are. Just like
the human brain can be influenced by false data and
fake news a machine learning application can learn to
make wrong conclusions. And just like human beings
often fail to explain the logic of their thinking, machine
learning applications, too, fall short in their capability
to explain how they came to their conclusion. The chal-
lenge of testing is to figure out whether changes and
improvements made the intelligence better or worse.

Introduction

4

A system that thinks is too complex for the human mind
Applications of artificial intelligence do not, of course,
think in the way humans do but there is some resem-
blance to human thinking.

An AI application may carry out logical reasoning using
a complex algorithm that, although fully deterministic,
can be too complex for a human mind to follow. This
is different from the majority of computer algorithms
that are simple enough to be executed by human
brains. A human being trying to reconstruct a logic of
AI is a bit like a human being trying to reconstruct the
line of thought of another human being: the outcome
is clear, the input data is clear, but the process in be-
tween remains largely unexplained.

The algorithm itself, although designed by a human
being is itself too complex to be followed and imitat-
ed by a human mind. Moreover, the algorithm learns
every time it meets new input data. Even though a hu-
man being could be able to repeat the algorithm it is
not always certain whether the output of subsequent
runs of the algorithm remains the same.

Let us consider an AI algorithm that takes information
about a credit card transaction as its input and tries
to determine how likely that transaction is a fraud.
The input may contain data such as the content and
location of the transaction, card number, and the
card holder’s transaction history. The AI algorithm has
probably been programmed to identify suspicious
transactions and trained with a wealth of data to
distinguish between transactions that are fraudulent
from those that are not.

Such an algorithm can rarely be 100% reliable because
there are always gray areas. People sometimes make
purchases very different from their normal purchasing
patterns and the bad guys may be very competent in
constructing unauthorized transactions that match the
buying patterns of the authorized cardholder.

The detection algorithm has to learn all the time to
remain effective. This can be achieved by creating a
self-learning algorithm, known as unsupervised ma-
chine-learning, or re-training the algorithm frequently.
Ideally, while processing a transaction, the algorithm
would also accumulate its knowledge on how a prop-
er transaction looks like. This is brilliant, of course.
However, just like human beings, machine learning
algorithms do a notoriously poor job explaining how
and why they made their conclusion. Therefore, there
is no reliable way to ensure that the learning of the
algorithm actually makes it better.

An infamous example is Tay, an experimental Twitter
bot published by Microsoft in 2016. Wikipedia summa-
rizes the story of Tay as follows:

Tay was an artificial intelligence chatterbot that was
originally released by Microsoft Corporation via Twitter on
March 23, 2016; it caused subsequent controversy when
the bot began to post inflammatory and offensive tweets
through its Twitter account, causing Microsoft to shut
down the service only 16 hours after its launch.[1] Accord-
ing to Microsoft, this was caused by trolls who “attacked”
the service as the bot made replies based on its interac-
tions with people on Twitter.

Learning algorithms, at least those based on reinforce-
ment learning, can learn bad habits, too. Just consider
the possible consequences if our credit card checking
algorithm, for whatever reason, began to learn that
some fraudulent transactions are, in fact, valid.

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Chatterbot
https://en.wikipedia.org/wiki/Microsoft_Corporation
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Trolling

5

The process of testing
Testing the functionality of a piece of software is a very
simple process. I mean, it’s very simple in principle.

1.	 Figure out how you can interact with the software.
For example, when testing a login screen, one
can (usually) interact by typing in a username, a
password, and by clicking an OK button or a Cancel
button.

2.	 Figure out what data you need to interact with the
software.
On the login screen, you only need usernames and
passwords, some of which would be correct and
some others incorrect.

3.	 Plan a flow of user actions and related input data.
Even in a simple application, there are usually
various flows of actions. A professional tester
looks both at the “normal” flow and exceptional or
abnormal flows. You may test clicking Ok without
entering any username or password or you may
test if it makes any difference whether you enter
the password first and the username second.

4.	 Figure out what should happen as a consequence of
executing the flow.
This is where professional testers shine. One
should always decide the expected result in
advance. If you don’t do so, you’ll easily accept
erroneous behavior as “expected”. If one clicks OK
without entering a username at all, the expected
result is an error message and an opportunity to
try again.

5.	 Execute the flow.

6.	 Record what happened.

7.	 Compare what happened to what should have hap-
pened.
In testers’ jargon, “error” or “defect” is found if
expected and actual outcomes are different. Now-
adays professional testers call these differences
using a more neutral term “finding”.

8.	 If you think you have not tested enough, go back to
step 3.

Of these steps, number 4 is the most interesting one.
How does the tester know what should happen? There
may exist a specification that describes the correct
behavior, or there may exist a previous version of the
software that is considered to behave correctly. Some-
times, the tester may just rely on his or her experi-
ence. The behavior of a login screen can be considered
commonly known and there aren’t that many alterna-
tive behaviors.

Sometimes, the tester first makes a guess about the
correct behavior and then assumes most users are
like him or her and would thus assume the same. This
principle is the basis of a discipline known as explor-
atory testing.

Any source that defines the correct behavior of the
system under test is known as “test oracle” in testers’
jargon. When testing AI applications, a test oracle
may be hard to find. It is both tedious and difficult to
construct credit card transactions and label them as
fraudulent or non-fraudulent. Sometimes, of course,
it is not that difficult. This is probably why recognizing
cats in images is commonly used for testing machine
learning algorithms.

6

Finding test data
A well-defined flow of events through an application,
with associated data and expected outcome, is known
as a test case. Selecting, designing, and maintaining
test cases is a tester’s most important task. The test
case design is always based on the existence of a test
oracle, i.e. a specification or some other ”source of
truth” that knows the expected outcome of the test
case.

Sometimes test case design is far from trivial. In our
example of credit card fraud detection, there is no
explicit specification of what makes a fraudulent or
possibly fraudulent transaction. Finding the right out-
come is like crime scene investigation: collecting a lot
of information, constructing a big picture from small
clues, making a verdict, and estimating its probability.

In most machine learning applications, the functional
logic of a test case is simple. One feeds in data and
gets out an answer, such as ”this is, on the probabil-
ity of 94,2%, an image of a cat”. The hard part is to
find or create a set of input data that is representa-
tive enough and to label it correctly; especially if it
is something more complex than an image of a cat.
Please note, that while recognizing an image of a cat
is easy for a human being it is difficult for a computer
algorithm while recognizing a fraudulent credit card
transaction may be easier for an algorithm than for a
human being.

Testing machine learning software would need a large
number of diverse, high-quality test cases but they are
hard to build. It is usually possible to have a limited set
of known cases, e.g. 10 credit card transactions, that
are known to be fraudulent and 10 that are known
to be proper. Testing with those 20 cases gives some
confidence in the correct behavior of the software
and helps, for example, detect if a new version of the
software is still working as expected.

Such limited tests help ensure the software still does
what it could do before. They tell nothing about
whether and how the software has improved or if new
problems have been introduced. Lacking a proper test
oracle, crafting such new tests may sometimes be very
tedious, if not impossible.

There are at least four different approaches to con-
structing test data for a learning system:

1.	Manually crafted test data.

2.	Testing with real production data.

3.	Combinatorial test data.

4.	AI-assisted test data design.

Let’s assess these approaches in the context of the
credit card fraud detection problem.

It is possible to construct test data manually. Most
probably, the test input data comes in the form of
transaction records and structured files, for example
in XML or JSON format, or may even contain natural
language. A human being can certainly construct such
data and label it as proper or suspicious. It’s just that
the effort of doing so is high and may require technical
skills.

Testing with real data, if available, is often a great
choice. In our case study, this would mean taking real
data from old transactions that have later on been
proven righteous or fraudulent. While this approach
has its merit, it may be illegal in many countries as
the privacy of personal and financial data is strongly
protected by laws and regulations. There are, however,
many other applications where testing with real data is
a viable choice.

The combinatorial test data approach may work well
for our case study. The idea is to divide the needed
test data into separate parts, such as transaction data,
card data, purchase location data, purchase history
data, etc., and make combinations of those parts so
that a large number of data sets can be generated
from a reasonably small amount of well-known data.
Moreover, one could add random data or randomly
mutated data. This is, of course, best done by some
kind of software generator rather than a human being.
The problem is that those ”data atoms” are rarely in-
dependent. For example, building test data by combin-
ing a card transaction of one person with a purchase
history that represents another person and card data
that represents a third person may not make a viable
test case. This approach works well when test data
is complex but can be divided into independent or
quasi-independent pieces that each can be labeled
reliably.

7

Dealing with regression: does my software still work?
A software tester seeks answers to two big questions:
does the software do what is expected and does the
software do something that is not expected. When
testing subsequent versions of the same software, a
tester looks at what has changed: there is a piece of
new functionality that has never been tested before,
there is old functionality that should still work as
before, and there is old functionality that used to have
defects but has been fixed and should now behave
differently.

The older the software gets the more important it
is to test that what worked yesterday still works the
same way today. Sometimes, especially if the software
has a large number of users, it may even be practical
to not correct old defects but to verify that they still
are there. A well-known example is an environment
sensing device that, because of a design error, re-
ports certain temperatures as Fahrenheit while in all
other functions it uses Centigrade. Such an error is a
big nuisance, but if there are already several people
and applications that know about it and have worked
around it, correcting the error would actually break
the assumptions on the behavior and thus make many
applications fail.

Testers use the phrase ”regression testing” to refer to
the activity of ensuring that the behavior of the soft-
ware has not changed unintentionally between sub-
sequent versions. With machine learning applications,
regression testing comes with a new twist: how does
one know if a change was intentional?

It is a rather common practice to use an older version
of the software as a test oracle and compare how the
behavior of a newer version differs from the behavior
of the older one. This works well when the new soft-
ware happens to behave the same way as the old. It
does not work for new functionality, though. It may
also fall short if the test results for the new version are
different.

Building on our credit card example again: imagine
that a new version of the software classifies a transac-
tion as valid while the previous version classified it as
possibly fraudulent. How do we know if this is an im-
provement or an error? The only way is to make some
kind of human judgment. This requires skill and knowl-
edge as the tester needs to go deep in the test data
and in the decision-making rules. It may also turn out
to be very slow and expensive if such changed regres-
sions are many. Moreover, the fact that the algorithm
made a false conclusion on data that is previously had
recognized right may not mean the algorithm is now
worse. The test results have to be assessed statistical-
ly, maybe even applying some kind of cost function.
In this particular example, one has to consider how
many transactions in total the new algorithm classified
correctly compared to the old and how did the cost of
erroneously classified transactions change.

There is no general solution to the regression test-
ing challenges. The fundamental question is general,
though: has the algorithm evolved for better or for
worse.

Finally, AI-assisted test data design means using the
beast to tame itself. There exist few, if any, gener-
al-purpose solutions for AI-assisted test data design
but the idea is simple: use a more or less intelligent
algorithm to process past test data and test results
and generate new test data based on the old one. In
a way, this is like the combinatorial approach with
steroids. Explainability may become a challenge, again.
The more machine intelligence there is in the test
data generation the less capable a human being is of
following the logic that was applied. This approach

resembles the concept of Generative Adversarial Net-
works where one algorithm tries to fake real data and
the other tries to detect what data is genuine and what
is faked.

No matter which approach you choose, the basic
challenges remain the same: how to create a large
enough amount of diverse test data and how to label
it reliably.

8

Searching for a recipe
It would be foolish to seek a single, ideal solution for
such a broad challenge as testing of AI software. All
viable solutions, however, seem to have a few things in
common.

Always test with your initial data set
If your application uses any kind of machine learning
it has been trained with some kind of initial data set.
This data set is your first test asset and, in the begin-
ning, it may be the only reliable test data you have.
Whenever you need to test your software start with
this data set.

Testing with the initial data set can only tell if your
software can still do the things it was able to do when
it was created. Therefore, it won’t take you far.

Accumulate test data continuously
You need more test data. In most AI applications it
is the data rather than the logic of the test case that
makes the test design a challenge. Therefore, you
need to keep accumulating test data. Sometimes it is
possible to pick real data from production, sometimes
it has to be engineered by the testing team. Some-
times your software may malfunction in production.

The only silver lining in that cloud is that you just
found very useful new test data. Any data that the soft-
ware could not process correctly is potential input for
future tests. If possible, use combinatorial techniques
to generate more test data from existing test data.
Take good care of the quality of your data. Accumulat-
ing just any data may make your test set large but not
necessarily any better.

Use many test oracles, if possible
Depending on what your software does, it may be
very easy or very difficult to determine the expected
outcome of each test. If you can manually label your
test data, you will be fine. This is the case with the
infamous cat pictures, for example. If you cannot, you
need to come up with something else. Sometimes
you may have an opportunity to use several machine
learning algorithms for the same data and compare
their outputs. Often, the best you can do is to rely
on the earlier versions of the same software as the
“source of truth”.

Compare subsequent test runs
Any change in test results between subsequent runs
tells that your software has evolved somehow. You
may not always be able to determine if the change was
for better or for worse - or maybe both at the same
time. But you will notice if something has changed and
can then start digging deeper. As explainability is the
Achilles’ heel of most AI applications, be prepared for
tedious digging. Any explainability that can be built in
the application will help to test and thus accelerate
time to value.

Use AI and automation in testing
The world is full of marvelous testing tools that can
automate many mundane tasks of software testing,
even when testing AI. However, none of them are
particularly well equipped for testing AI applications.
You may need to complement commercial tools with
your tools and scripts that generate suitable test data
or automate the analysis of test results. While such
general-purpose tools may not yet exist building a tool
to suit the specific needs of your application may be a
lesser effort. Maybe you can find ways to apply AI to
test AI.

9

Ultimately, artificial intelligence is just algorithms and data
Technically, “artificial intelligence” is not that different
from any other software. It is comprised of program-
matic algorithms and data that were applied to train
those algorithms.

The key differences are in learning, randomness, and
explainability. Unlike traditional computing algorithms,
AI algorithms may change their behavior when they
learn from new data. There is a random element in
many of those algorithms, making them only partially
deterministic. And finally, because of learning and ran-
domness, their logic may be hard for a human being
to reconstruct or explain.

These characteristics make AI sometimes challenging
to test. As we have shown in this paper, the traditional
methods of software testing still apply for AI, too. The
amount and quality of test data are even more import-
ant than with traditional applications. Automation of
testing tasks is necessary because many aspects of AI
testing are simply too tedious or overwhelming for the
human mind. The use of AI to test AI may open com-
pletely new avenues in software testing and, at a high
probability, will be increasingly used also for testing
“traditional” software systems.

Esko Hannula
CEO, Qentinel
esko.hannula@qentinel.com

info@qentinel.com

mailto:esko.hannula%40qentinel.com?subject=AI%20and%20testing
http://qentinel.com/
http://www.qentinel.com/contact

	Introduction
	A system that thinks is too complex for the human mind
	The process of testing
	Finding test data
	Dealing with regression: does my software still work?
	Searching for a recipe
	Ultimately, artificial intelligence is just algorithms and data

