
While it is undoubtedly accepted that test automation is
the key to increased quality and productivity, the act of test
design is often the completely overlooked aspect of test
automation. Test design is a separate and distinct task and
is a powerful method to boost your test automation’s bug
detection capabilities.

In this whitepaper, we will discuss two very exciting and
powerful automated test design methods in Qentinel Pace.
We will talk about their theory and how you can leverage
them in your test automation to fool proof your application
against errors which were earlier untouched by your test
automation.

Test design automation is key to
improve productivity

Test design automation

Test automation, even still today, is primarily focused on
automating test management and test execution while test
design remains largely a manual activity.

Automated test design process significantly reduces the
functional testing efforts while at the same time increas-
ing the quality of testing. Not to mention that the quality
of your testing is strongly interconnected with the ability

to find flaws in the application being tested. And for that
specific purpose you need to strengthen the fault detection
capability of your test automation. Qentinel Pace leverages
efficient and effective test design techniques for designing
test scenarios that are strong in their fault detection abilities.
Not only do these test design automation capabilities yield
measurable improvements in quality, they are extremely
straightforward to take into use. Let’s look at them closely.

At large, test design concerns with making the decisions on

1. Combinatorial Testing

Combinatorial testing is based on the premise that many er-
rors in software can only arise from the interaction of two or
more parameters. This is called interaction principle, which
states that most software failures are induced by single “fac-
tor” faults or by a combinatorial effect of two factors, with
progressively fewer failures induced by interactions between
more factors. This is a practical hypothesis suggesting that if
there is a fault that manifests with a specific setting of input
variables, it is most likely caused by only a small subset of
those variable values. This implies that software faults can
be discovered by relatively simple and small tests.

For example, assume that we have 3 input variables OS,
Browser, and JavaScript with possible values:

OS = Linux, Windows, iOS, Android
Browser = chrome, Firefox, Edge
JavaScript = enabled, disabled

With pairwise testing we aim to generate tests where two
variables are in “interaction”. All the the interacting pairs are
automatically identified for example, (Linux, Chrome), (Linux,
Firefox), …, (Windows, Chrome), …, (Chrome, enabled) and
(Chrome, disabled). After which we create a small subset
of test cases covering all the interacting pairs. It has been
shown empirically that by choosing the input data values
this way, we significantly increase the likelihood of finding
software faults while keeping the number of test cases rela-
tively small. Of course, there is no reason why coupling two
variables would be always the best strategy and therefore
Qentinel Pace does not only support pairwise testing, but
more general N-wise testing approach, where the user can
freely choose the value for N.

What to test in the first place? How to stimulate the application
and with what test data values?

How the application should
react and respond to the stimuli
provided?

1 2 3

Empower your test automation with test design automation

1. Combinatorial Testing
Test are generated from one or more test data combination.
For example, let’s say you have a CRM system say Salesforce
for which you have built a new integration and you would
like to test that this integration works end-to-end faultlessly.
The first step is typically to fill a form and enter first name. In
your automated test case using PaceWords this step will be

TypeText First name John

As you might have guessed correctly, Qentinel Pace is running very powerful algorithms and solving multiparameter opti-
mization problems in background. Let’s look at how you can leverage them in your test cases to unleash a whole new test
coverage of otherwise untouched or untested use cases of your application.

Now, if you want to generate test cases using combinato-
rial testing, you would need to provide a data set for the
test case. The alternative data values are expressed in the
Paceword test cases using “list notation” where alternative
values are placed between square brackets and separated
by commas as follows:

TypeText First name [John, Jane,
 Harry, Mary]

The above defines that there are 4 alternative data values for
First name, namely John, Jane, Harry and Mary. Depending
on the “combinatorial test generation mode”, the approach
that the test generator employs in the test generation, will
vary. Irrespective of the chosen test generation mode, the
generated tests will always have one of the data values
selected. That is, the generated test cases may for example
have

TypeText First name John

There are two combinatorial test generation modes; linear
and nwise.

Linear option (on by default) instructs the test generator
apply a linear data selection mechanism where Qentinel
Pace generates a test collection where each test data value is
tested at least once. For example

We are often faced with problems where we need to test the
application with valid and invalid email addresses, IBAN bank
account numbers, social security numbers, string encoded
IP addresses, and so on. While combinatorial testing is an
excellent tool for finding flaws in tested applications, com-
binatorial testing as such does not address the above-men-
tioned problem, that is the problem of test data design.
Experimental evidence and practical experience reveal that it
is extremely difficult to create sufficient and proper test data
for the design of test cases that comprehensively covers
the software logic for any non-trivial software system. This
becomes a major part of test design that takes significant ef-
fort, experience and skill to excel manually. To alleviate this
fundamental problem in test design, Qentinel Pace includes
a unique test data generation ability that allows extremely

easy-to-use while highly efficient way of automatically gen-
erating test data for testing common patterns such as email
addresses and IBAN numbers, mentioned above.

The test data generation algorithm of Qentinel Pace deploys
a systematic analysis approach for automatically identifying
and generating test cases for covering “corner cases” of vari-
ous types of data. The algorithm does not generate test data
in random but instead it can be considered to be a “bound-
ary value analyser” generalized to arbitrary data patterns
as it is capable of identifying corner cases that are crucial to
analyse and verify thoroughly during the quality assurance
process.

2. Test Data Generation

My test case
[Tags] testgen linear
TypeText First name [John, Jane]
TypeText Last name [Johnson,
 Janeson]

2. Test Data Generation

Test data generation capability are used by supplying Pace-
words with predefined test data modifiers, which cause the
test generator to trigger a proprietary test data generation
algorithm. As alluded earlier, this algorithm systematically
analyses the provided test data pattern and creates test cas-
es for covering each “corner case” of the pattern. Therefore,
the algorithm can be considered to be a “boundary value
analyser” generalized to arbitrary data patterns.

Drawing from our Salesforce integration test example, let’s
say you have to test that your form excepts all valid email
addresses and show a message ‘Valid email address provid-
ed’. Your test case will look like as shown below

My test case
[Tags] testgen
TypeText Email VALID_EMAIL_
 ADDRESS
VerifyText Valid email address provided

Would produce two test cases, one with data combination
(John, Johnson) and second with (Jane, Janeson). As a note,
testgen tag informs Qentinel Pace your intent to use test
generation.

N-wise option, on the other hand, enables the combinato-
rial test data generator and it is provided with a numeric
argument which defines the number of variables interacting.
Pairwise testing, for example, is enabled by setting nwise=2

My test case
[Tags] testgen nwise=2
TypeText First name [John, Jane]
TypeText Last name [Johnson,
 Janeson]

The example above would generate 4 test cases with data
combinations (John, Johnson), (John, Janeson), (Jane, Johnson)
and (Jane, Janeson). Yet another example is shown below
where there are more than two fields with alternative data
values.

My test case
[Tags] testgen nwise=2
TypeText First name [John, Jane]
TypeText Last name [Johnson,
 Janeson]
TypeText Company [Qentinel,
 ACME, Inc
 Incorporated]

From which we will get 6 test cases with data values (John,
Johnson, Qentinel), (Jane, Janeson, Qentinel), (Jane, Johnson,
ACME), (John, Janeson, ACME), (John, Janeson, Inc Incorporat-
ed) and (Jane, Johnson, Inc Incorporated).

Drawing from our vast datasets, we recommend pairwise
testing (nwise=2 for conducting combinatorial testing. How-
ever should there be a need to have more than two inter-
acting variables, nwise can be configured accordingly, for
example nwise=3 or nwise=4.

Here, the predefined test data modifier VALID_EMAIL_AD-
DRESS instructs the test data generation algorithm to create
a collection of test cases where (1) each generated test case
contains a valid email address in such a fashion that (2) each
distinct test case verifies a unique feature or corner case of
email address pattern. Qentinel Pace will systematically cre-

ate tests for verifying that all possible corner cases of email
validation functionality are carefully covered. The end user
only needs to supply Pacewords with the specific modifier,
in this case VALID_EMAIL_ADDRESS and the algorithm fully
automates the test creation.

Furthermore, the test data generation expands to negative
and invalid test data. That is, the algorithm can be used to
generate test data that might look valid on surface level, but
in fact is somehow wrongly formatted. This ensures that
your application behave properly not only for valid data but
also handles invalid data values properly by rejecting them
gracefully. Invalid test data is generated simply by prefix-
ing the test data modifier with INVALID instead of VALID as
shown below

My test case
[Tags] testgen
TypeText Email INVALID_
 EMAIL_ADDRESS
VerifyText Invalid email address provided

There is an extensive list of such modifiers, which are used
most often.

3. Combinatorial testing and test generation

You do not need to stop here, the test data modifiers can be
used in conjunction with combinatorial test generation as
well. Let’s take a test case wherein, you first want to enter
a first name and then a last name from combination of two
data values each and then a valid email address.

And later append that test case to test you application’s
behaviour for invalid IBAN.

My test case
[Tags] testgen nwise=2
TypeText First name [John, Jane]
TypeText Email VALID_EMAIL_
 ADDRESS
TypeText IBAN INVALID_IBAN
VerifyText Valid email address but invalid
 IBAN provided

Test generation happens right before test execution. Qentinel Pace looks at your test cases and determine whether or not
you have called for a test generation. Should you have warranted any auxiliary test data generation or combinatorial testing,
Qentinel Pace will generate the necessary test cases and schedules the generated test cases for test execution. You could
define a maximum number of tests you want Qentinel Pace to generate for you, by default it is set to 100.

Once test generation ends, you are notified about the generated test cases, which are scheduled for execution. You can anal-
yse the generate test cases and gain further insights into the generated tests. Should you realise that you have generate far
too many cases by mistake and you would not necessarily want to execute them all, you may abort the execution process.
Moreover, should you realize that a set of generated test case is of special significance, you could include it in your regres-
sion test set for good.

Test Generation in Qentinel Pace

My test case
[Tags] testgen nwise=2
TypeText First name [John, Jane]
TypeText Last name [Johnson,
 Janeson]
TypeText Email VALID_EMAIL_
 ADDRESS

www.qentinel.com
info@qentinel.com

